ATL09 Product Data Dictionary Date Generated: 2020-10-21T15:57:03 | description | (Attribute) | This data set (ATL09) contains calibrated, attenuated backscatter profiles, layer integrated attenuated backscatter, and other parameters including cloud layer height and atmospheric characteristics obtained from the data. The data were acquired by the Adv | |-----------------------------------|-------------|--| | level | (Attribute) | L3A | | short_name | (Attribute) | ATL09 | | title | (Attribute) | SET_BY_META | | Group: / | | This data set (ATL09) contains calibrated, attenuated backscatter profiles, layer integrated attenuated backscatter, and other parameters including cloud layer height and atmospheric characteristics obtained from the data. The data were acquired by the Adv | | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | SET_BY_META | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | SET_BY_META | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | итс | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL09 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_file_uuid | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL09.001 | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL09 | | institution | (Attribute) | SET_BY_META | | instrument | (Attribute) | SET_BY_META | | keywords | (Attribute) | SET_BY_META | | keywords_vocabulary | (Attribute) | SET_BY_META | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | SET_BY_META | | processing_level | (Attribute) | L3A | | | | |--------------------------------|-----------------------------|---|--|---|--| | project | (Attribute) | SET_BY_META | | | | | publisher_email | (Attribute) | SET_BY_META | | | | | publisher_name | (Attribute) | SET_BY_META | | | | | publisher_url | (Attribute) | SET_BY_META | | | | | references | (Attribute) | SET_BY_META | | | | | source | (Attribute) | SET_BY_META | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | | | | | | | | summary | (Attribute) | SET_BY_META | | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | Label
(Layout) | Datatype(Dims) Fillvalue | long_name
standard_name | units | description | | | ds_surf_type
COMPACT | INTEGER([5]) | Surface Type Dimension Scale
None | 1 | Dimension scale indexing the surface type array. Index=1 corresponds to Land; index = 2 corresponds to Ocean; Index = 3 corresponds to Sealce; Index=4 corresponds to LandIce; Index=5 corresponds to InlandWater (Source: Dim Scale); (Meanings: [1 2 3 4 5]) (Values: ['land' 'ocean' 'seaice' 'landice' 'inland_water']) | | | Group: /ancillary_data | | Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants. | | | | | data_rate | (Attribute) | Data within this group pertain to the granule in its entirety. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE([1]) | ATLAS Epoch Offset
None | seconds since 1980-
01-
06T00:00:00.0000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | | control
CONTIGUOUS | STRING([1]) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: Operations) | | | data_end_utc
COMPACT | STRING([1]) | End UTC Time of Granule
(CCSDS-A, Actual)
None | 1 | UTC (in CCSDS-A format) of the last data point within the granule. (Source: Derived) | | | data_start_utc
COMPACT | STRING([1]) | Start UTC Time of Granule
(CCSDS-A, Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | | end_cycle
COMPACT | INTEGER([1]) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day | | | | | | | repeat cycles completed by the mission. (Source: Derived) | |---------------------------|--------------|---|------------------------------|---| | end_delta_time
COMPACT | DOUBLE([1]) | ATLAS End Time (Actual) time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | end_geoseg
COMPACT | INTEGER([1]) | Ending Geolocation Segment None | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE([1]) | Ending GPS SOW of Granule
(Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER([1]) | Ending GPSWeek of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER([1]) | Ending Orbit Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER([1]) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. | | | Ī | | | (Source: Derived) | |------------------------------|--------------|---|------------------------------
--| | end_rgt
COMPACT | INTEGER([1]) | Ending Reference Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | granule_end_utc
COMPACT | STRING([1]) | End UTC Time of Granule
(CCSDS-A, Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived) | | granule_start_utc
COMPACT | STRING([1]) | Start UTC Time of Granule
(CCSDS-A, Requested)
None | 1 | Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived) | | qa_at_interval
COMPACT | DOUBLE([1]) | QA Along-Track Interval
None | 1 | Statistics time interval for along-track QA data. (Source: control) | | release
COMPACT | STRING([1]) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. (Source: Operations) | | start_cycle
COMPACT | INTEGER([1]) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time COMPACT | DOUBLE([1]) | ATLAS Start Time (Actual) time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER([1]) | Starting Geolocation Segment
None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to- | | | | | | orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | |--------------------------------|-----------------------------|--|----------------------------|--| | start_gpssow
COMPACT | DOUBLE([1]) | Start GPS SOW of Granule
(Actual)
None | seconds | GPS seconds-of-week of the first data point in the granule. (Source: Derived) | | start_gpsweek
COMPACT | INTEGER([1]) | Start GPSWeek of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER([1]) | Starting Orbit Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region
COMPACT | INTEGER([1]) | Starting Region
None | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | start_rgt
COMPACT | INTEGER([1]) | Starting Reference Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | version
COMPACT | STRING([1]) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | Group: /ancillary_data/atmosph | ere | Contains general ancillary parame | ters. | | | data_rate | (Attribute) | Data within this group pertain to the | e granule in its entirety. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | a_m1
COMPACT | FLOAT([3]) | a_m1
None | meters | a_m, anisotropy factor, to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | a_m2
COMPACT | FLOAT([3]) | a_m2
None | meters | a_m, anisotropy factor, to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | | aclr_use_atlas
COMPACT | INTEGER([1]) | ALR Use ATLAS Flag
None | 1 | Flag to control the computation of the aclr_true parameter. | | | | | | (Source: Operations); (Meanings: [0 1]) (Values: ['non_water_uses_gnome' 'non_water_uses_ATLAS_ASR']) | |---------------------------------|--------------|---|---------|--| | alpha_day_pce1
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Day PCE1
None | 1 | Molecular Folding Scaling Factor (PCE1/day) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_day_pce2
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Day PCE2
None | 1 | Molecular Folding Scaling Factor (PCE2/day) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_day_pce3
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Day PCE3
None | 1 | Molecular Folding Scaling Factor (PCE3/day) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_night_pce1
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Night PCE1
None | 1 | Molecular Folding Scaling Factor (PCE1/night) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_night_pce2
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Night PCE2
None | 1 | Molecular Folding Scaling Factor (PCE2/night) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_night_pce3
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Night PCE3
None | 1 | Molecular Folding Scaling Factor (PCE3/night) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_twilight_pce1
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Twilight PCE1
None | 1 | Molecular Folding Scaling Factor (PCE1/twilight) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_twilight_pce2
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Twilight PCE2
None | 1 | Molecular Folding Scaling Factor (PCE2/twilight) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_twilight_pce3
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
Twilight PCE3
None | 1 | Molecular Folding Scaling Factor (PCE3/twilight) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | asr_cal_factor
COMPACT | FLOAT([1]) | ASR CAL factor
None | 1 | Calibration factor for ASR computation (Source: Atmosphere ATBD) | | atlas_bandpass_fw
COMPACT | FLOAT([1]) | ATLAS Bandpass Filter Width None | nm | The ATLAS bandpass filter width. (Source: Atmosphere ATBD) | | atlas_tele_fov
COMPACT | FLOAT([1]) | ATLAS Telescope Field of View None | radians | The ATLAS telescope field of view. (Source: Atmosphere ATBD) | | backg_max_solar_elev
COMPACT | FLOAT([1]) | Background maximum solar elevation angle None | degrees | Background maximum solar elevation angle in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_min_solar_elev
COMPACT | FLOAT([1]) | Background minimum solar elevation angle None | degrees | Background minimum solar elevation angle in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_select
COMPACT | INTEGER([1]) | background method used
None | 1 | The background method used in calculation of NRB (Source: Atmosphere ATBD section 3.3.4); (Meanings: [1 2 3]) (Values: | | | | | | ['method1' 'method2' 'method3']) | |-----------------------------------|--------------|---|---------------
--| | bs_extinc_backs
COMPACT | FLOAT([1]) | Blowing Snow to Extinction
Backscatter Ratio
None | sr | blowing snow extinct to backscatter ratio (Source: Atmosphere ATBD) | | bs_lay_max_size
COMPACT | FLOAT([1]) | blowing snow maximum layer
size
None | m | blowing snow maximum layer size (Source: Atmosphere ATBD) | | bs_thresh_scale
COMPACT | FLOAT([1]) | scale factor for blowing snow
threshold
None | 1 | scale factor for blowing snow
threshold
(Source: Atmosphere ATBD) | | bs_top_scale
COMPACT | FLOAT([1]) | scale factor for layer top threshold
None | 1 | scale factor for layer top threshold (Source: Atmosphere ATBD) | | bs_wind_thres
COMPACT | FLOAT([1]) | scale factor for layer top threshold
None | m/s | minimum windspeed for blowing snow (Source: Atmosphere ATBD) | | cal_bot_ht
COMPACT | FLOAT([1]) | cal_bot_ht
None | m | Bottom height of calibration zone (m) (Source: Atmosphere ATBD) | | cal_default
COMPACT | FLOAT([1]) | Default calibration value
None | 1 | Calibration constant default if it cannot be calculated from the data. (Source: Atmosphere ATBD) | | cal_lat_bound
COMPACT | DOUBLE([1]) | cal_lat_bound
None | degrees_north | Calibration constant latitude bound (deg_north) (Source: Atmosphere ATBD) | | cal_select
COMPACT | INTEGER([1]) | calibration method used
None | 1 | The calibration method used in calculation of NRB (Source: Atmosphere ATBD section 3.3.4); (Meanings: [1 2 3]) (Values: ['method1' 'method2' 'method3']) | | cal_top_ht
COMPACT | FLOAT([1]) | cal_top_ht
None | m | Top height of calibration zone (m) (Source: Atmosphere ATBD) | | cld_aer_discrim_thresh
COMPACT | FLOAT([1]) | cloud aerosol discrimination
threshold
None | 1 | Adjustable threshold for determining whether a layer is cloud, aerosol, or unknown. (Source: Atmosphere ATBD) | | cutoff1
COMPACT | FLOAT([3]) | cutoff1
None | 1 | cutoff to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | cutoff2
COMPACT | FLOAT([3]) | cutoff2
None | 1 | cutoff to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | | demtol1
COMPACT | INTEGER([1]) | DEM tolerance for mask 1
None | bins | DEM tolerance for mask 1 in DDA surface finding (Source: Atmosphere ATBD) | | demtol2
COMPACT | INTEGER([1]) | DEM tolerance for mask 2
None | bins | DEM tolerance for mask 2 in DDA surface finding (Source: Atmosphere ATBD) | | detector_efficiency
COMPACT | FLOAT([1]) | Detector Quantum Efficiency
None | 1 | Detector quantum efficiency (Qe) (Source: Atmosphere ATBD) | | downsample1
COMPACT | FLOAT([3]) | downsample1
None | bins | downsample to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | downsample2
COMPACT | FLOAT([3]) | downsample2
None | bins | downsample to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | | dtime_select
COMPACT | INTEGER([1]) | dead time factor used
None | 1 | Deadtime factor used.
(Source: Control); (Meanings: [1 2])
(Values: ['dtime_fact1' 'dtime_fact2']) | | | | | | | | layer_flag_cp1
COMPACT | INTEGER([1]) | Layer Flag CP 1
None | 1 | Cloud_flag_ASR value used in the computation of the consolidated layer flag during daytime when cloud layers were detected. (Source: Atmosphere ATBD) | |---------------------------|-------------------------------------|--|--------|--| | layer_flag_cp2
COMPACT | INTEGER([1]) | Layer Flag CP 2
None | 1 | Cloud_flag_ASR value used in the computation of the consolidated layer flag during daytime when no cloud layers were detected. (Source: Atmosphere ATBD) | | layer_sep
COMPACT | INTEGER([1]) | minimum layer separation
None | bins | minimum layer separation
(Source: Atmosphere ATBD) | | layer_thick
COMPACT | INTEGER([1]) | minimum layer thickness
None | bins | minimum layer thickness
(Source: Atmosphere ATBD) | | Ir_bsnow_fac
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Low rate blowing snow factor
None | 1 | Low rate blowing snow scaling factor (Source: Atmosphere ATBD) | | max_bsnow_cab
COMPACT | FLOAT([1]) | Maximum CAB for blowing snow None | 1/m-sr | Maximum CAB for blowing snow (Source: Atmosphere ATBD) | | max_layers
COMPACT | INTEGER([1]) | maximum cloud layers for a profile
None | bins | maximum cloud layers for a profile (Source: Atmosphere ATBD) | | min_layer_sep
COMPACT | INTEGER([1]) | mlnimum layer separation conf
None | bins | Minimum layer separation for DDA confidence (Source: Atmosphere ATBD, part 2) | | neighborhood1
COMPACT | FLOAT([1]) | neighborhood1
None | bins | neighborhood to use for pass 1
(Source: Atmosphere ATBD) | | neighborhood2
COMPACT | FLOAT([1]) | neighborhood2
None | bins | neighborhood to use for pass 2 (Source: Atmosphere ATBD) | | normalization1
COMPACT | INTEGER_1([1]) | normalization1
None | 1 | normalization flag to use for pass 1 (Source: Atmosphere ATBD); (Meanings: [0 1]) (Values: ['true' 'false']) | | normalization2
COMPACT | INTEGER_1([1]) | normalization2
None | 1 | normalization flag to use for pass 2 (Source: Atmosphere ATBD); (Meanings: [0 1]) (Values: ['true' 'false']) | | num_passes
COMPACT | INTEGER_1([3]) | number of passes
None | 1 | Flag indicating if cloud detection algorithm does one pass or two passes (day, night, twilight) (Source: Atmosphere ATBD); (Meanings: [0 1]) (Values: ['one' 'two']) | | phi_land
COMPACT | FLOAT([1]) | phi land
None | 1 | Factor for correcting the potential clear sky ASR biases for land (Source: Atmosphere ATBD, part 1, section 4.6.2.3) | | phi_ocean
COMPACT | FLOAT([1]) | phi ocean
None | 1 | Factor for correcting the potential clear sky ASR biases for ocean (Source: Atmosphere ATBD, part 1, section 4.6.2.3) | | planck_const
COMPACT | DOUBLE([1]) | Planck constant (h)
None | Js | Planck constant (h)
(Source: Atmosphere ATBD section
2) | | proc_interval
COMPACT | DOUBLE([1]) | amount of data processed at one time
None | S | amount of data processed at one time (Source: Atmosphere ATBD) | | quantile1
COMPACT | FLOAT([3]) | quantile1
None | 1 | quantile to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | quantile2
COMPACT | FLOAT([3]) | quantile2
None | 1 | quantile to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | |--|-----------------------------|---|--------------------------------|--| | receiver_optical_throughput
COMPACT | FLOAT([1]) | Receiver Optics Throughput
None | 1 | Nominal Receiver Optics Throughput (Source: Atmosphere ATBD) | | sigma1
COMPACT | FLOAT([3]) | sigma1
None | meters | sigma to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | sigma2
COMPACT | FLOAT([3]) | sigma2
None | meters | sigma to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | | size_threshold1
COMPACT | FLOAT([3]) | size_threshold1
None | bins | size_threshold, minimum cluster
size, to use for pass 1 (day, night,
twilight)
(Source: Atmosphere ATBD) | | size_threshold2
COMPACT | FLOAT([3]) | size_threshold2
None | bins | size_threshold, minimum cluster
size, to use for pass 2 (day, night,
twilight)
(Source: Atmosphere ATBD) | | snow_age
COMPACT | FLOAT([1]) | Snow Age
None | hours | Age of the snow on the ground.
(Source: Atmosphere ATBD) | | solar_flux
COMPACT | FLOAT([1]) | Solar Flux
None | W/(m^2 nm)) | Solar flux at the top of the atmosphere at 532nm. (Source: Atmosphere ATBD) | | surf_min
COMPACT | INTEGER([1]) | minimum count for a surface type
to be considered separate
surface type
None | counts | minimum count for a surface type to
be considered separate surface type
(Source: Atmosphere ATBD) | | surface_signal_source
COMPACT | INTEGER([1]) | Signal Source Flag
None | 1 | Indicates the source of signal information used by ASR. (Source: Atmosphere ATBD); (Meanings: [1 2]) (Values: ['use_atl04' 'use_atl03']) | | telescope_area
COMPACT | DOUBLE([1]) | Telescope Effective Area
None | sq meters | Effective collection area of telescope (At) (Source: Atmosphere ATBD) | | thresh_bias1
COMPACT | FLOAT([3]) | thresh_bias1
None | photons* square
meter/Joule | thresh_bias to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | thresh_bias2
COMPACT | FLOAT([3]) | thresh_bias2
None | photons* square
meter/Joule | thresh_bias to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | | thresh_sensitivity1
COMPACT | FLOAT([3]) | thresh_sensitivity1
None | 1 | thresh_sensitivity to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | thresh_sensitivity2
COMPACT | FLOAT([3]) | thresh_sensitivity2
None | 1 | thresh_sensitivity to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | | threshold_segment_length1
COMPACT | FLOAT([3]) | threshold_segment_length1
None | bins | threshold_segment_length to use for pass 1 (day, night, twilight) (Source: Atmosphere ATBD) | | threshold_segment_length2
COMPACT | FLOAT([3]) | threshold_segment_length2
None | bins | threshold_segment_length to use for pass 2 (day, night, twilight) (Source: Atmosphere ATBD) | | Group: /orbit_info | | Contains orbit information. | | | | data_rate | (Attribute) | Varies. Data are only provided
when one of the stored values (besides time) changes. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | crossing_time
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node Crossing Time time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | |---------------------------|--------------------------|---|------------------------------|--| | cycle_number
CHUNKED | INTEGER_1(['Unlimited']) | Cycle Number
None | 1 | A count of the number of exact repeats of this reference orbit. (Source: Operations) | | lan
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | orbit_number
CHUNKED | UINT_2_LE(['Unlimited']) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | Reference Ground track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) | | sc_orient
CHUNKED | INTEGER_1(['Unlimited']) | Spacecraft Orientation
None | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward' 'forward' 'transition']) | | sc_orient_time
CHUNKED | DOUBLE(['Unlimited']) | Time of Last Spacecraft Orientation Change time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering | | | | | | between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01- 06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | |--------------------------------------|-----------------------------|---|--|--|--| | Group: /profile_x | | earth, sequential transmit pulses ill track width is approximately 14m. Profiles are numbered from the left | ch group contains the segments for the strong beam of one Pair Track. As ICESat-2 orbits the th, sequential transmit pulses illuminate six ground tracks on the surface of the earth. The ck width is approximately 14m. The Atmosphere profiles are only reported for the strong beam. offiles are numbered from the left to the right in the direction of spacecraft travel as: 1 for the -most pair of beams; 2 for the center pair of beams; and 3 for the right-most pair of beams. | | | | data_rate | (Attribute) | See subgroups for individual data r | ates. | | | | Group: /profile_x/bckgrd_atlas | | Contains the ATLAS 50-shot backs | ground data and derivati | ons. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | bckgrd_counts
CHUNKED | INTEGER(['Unlimited']) | ATLAS 50-shot background count None | counts | Onboard 50 shot background (200 Hz) sum of photon events within the altimetric range window. (Source: ATL03 ATBD Section 7.3) | | | bckgrd_counts_reduced
CHUNKED | INTEGER(['Unlimited']) | ATLAS 50-shot background count - reduced None | counts | Number of photon counts in the 50-
shot sum after subtracting the
number of signal photon events,
defined as in ATBD Section 5, in that
span.
(Source: ATL03 ATBD Section 7.3) | | | bckgrd_hist_top
CHUNKED | FLOAT(['Unlimited']) | Top of the altimetric range window None | meters | The height of the top of the altimetric histogram, in meters above the WGS-84 ellipsoid, with all geophysical corrections applied. Parameter is ingested at 50-Hz, and values are repeated to form a 200-Hz array. (Source: ATL03 ATBD Section 7.3) | | | bckgrd_int_height
CHUNKED | FLOAT(['Unlimited']) | Altimetric range window width None | meters | The height of the altimetric range window. This is the height over which the 50-shot sum is generated. Parameter is ingested at 50-Hz, and values are repeated to form a 200-Hz array. (Source: ATL03 ATBD Section 7.3) | | | bckgrd_int_height_reduced
CHUNKED | FLOAT(['Unlimited']) | Altimetric range window height - reduced None | meters | The height of the altimetric range window after subtracting the height span of the signal photon events in the 50-shot span. (Source: ATL03 ATBD Section 7.3) | | | bckgrd_rate
CHUNKED | FLOAT(['Unlimited']) | Background count rate based on
the ATLAS 50-shot sum
None | counts / second | The background count rate from the 50-shot altimetric histogram after removing the number of likely signal photons based on Section 5. (Source: ATL03 ATBD Section 7.3) | | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) | | | | | | | epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01- 06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------|---| | pce_mframe_cnt
CHUNKED | UINT_4_LE(['Unlimited']) | PCE Major frame counter
None | counts | Major Frame ID - The major frame ID is read from the DFC and starts counting at DFC POR. The counter is used to identify individual major frames across diag and science packets. This counter can go for about 2.7 years before rolling over. It is in the first time tag science packet. Used as part of the photon ID (Source: ATL02) | | Group: /profile_x/high_rate | | Contains parameters related to Ca | librated Attenuated Back | scatter at 25 hz | | data_rate | (Attribute) | Data in this group is stored at a 25 | hz (25 per second) rate. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | aclr_true
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Clear sky ASR
None | 1 | Clear sky initial surface reflectance
based on GOME climatology or Cox-
Munk model: see Fig 3.6.5 of the
Atmosphere ATBD.
(Source: Atmosphere ATBD) | |
apparent_surf_reflec
CHUNKED | FLOAT(['Unlimited']) | Apparent Surface Reflectance
None | 1 | Apparent Surface Reflectance
(ASR): Eqn 4.7
(Source: Atmosphere ATBD) | | asr_cloud_probability
CHUNKED | INTEGER(['Unlimited']) | ASR cloud probablity
None | 1 | Probability of the occurrence of cloud based on the magnitude of the apparent surface reflectivity. (Source: Atmosphere ATBD part 1 (section 4.6.2.3)) | | backg_c
CHUNKED | FLOAT(['Unlimited']) | Background
None | counts | Background, in photons/bin, used in the NRB Computation. (Source: Atmosphere ATBD) | | backg_theoret
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Background (Theoretical)
None | photons/bin | The theoretical background, in photons/bin. (Source: Atmosphere ATBD) | | beam_azimuth
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | beam azimuth
None | degrees_east | Beam azimuth
(Source: ATL03 ATBD) | | beam_elevation
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | beam elevation
None | degrees | Beam elevation
(Source: ATL03 ATBD) | | bsnow_con
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | Blowing snow confidence
None | 1 | Blowing snow confidence3=surface not detected; -2=no surface wind;-1=no scattering layer found; 0=no top layer found; 1=none-little; 2=weak; 3=moderate; 4=moderate-high; 5=high; 6=very high (Source: Atmosphere ATBD); (Meanings: [-3 -2 -1 0 1 2 3 4 5 6]) (Values: ['surface_not_detected' 'no_surface_wind' 'no_scattering_layer_found' 'no_top_layer_found' 'none_little' 'weak' 'moderate' 'moderate_high' | | | | | | 'high' 'very_high']) | |----------------------------|---------------------------------------|--|---------------|---| | bsnow_dens
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Blowing snow density
None | 1 | Blowing snow layer density (Source: Atmosphere ATBD) | | bsnow_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Blowing Snow layer thickness
None | meters | Blowing Snow layer thickness (height of top above surface) (Source: Atmosphere ATBD) | | bsnow_h_dens
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Blowing Snow layer thickness from density None | meters | Blowing Snow layer thickness from density (height of top above surface) (Source: Atmosphere ATBD) | | bsnow_intensity
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Blowing snow intensity
None | meters/second | Blowing snow intensity defined as the average scattering ratio within the blowing snow layer times the 10 m wind speed. (Source: Atmosphere ATBD part I (section 4.5.3)) | | bsnow_od
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Blowing snow OD
None | 1 | Blowing snow layer optical depth (Source: Atmosphere ATBD) | | bsnow_psc
CHUNKED | INTEGER_1(['Unlimited']) | Blowing snow PSC flag
None | 1 | Blowing snow PSC flag. Indicates the potential for polar stratospheric clouds to affect the blowing snow retrieval, where 0=none and 3=maximum. This flag is a function of month and hemisphere and is only applied poleward of 60 north and south. (Source: Atmosphere ATBD Section 4.5); (Meanings: [0 1 2 3]) (Values: ['none' 'slight' 'moderate' 'maximum_bsnow_PSC_affected']) | | cab_prof
CHUNKED | FLOAT(['Unlimited', 700]) INVALID_R4B | Calibrated Attenuated
Backscatter
None | 1 | Calibrated Attenuated Backscatter
from 20 to -1 km with vertical
resolution of 30m (eqn 4.1)
(Source: Atmosphere ATBD) | | cloud_flag_asr
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | Cloud Flag ASR
None | 1 | Cloud flag (probability) from apparent surface reflectance. 0=clear with high confidence; 1=clear with medium confidence; 2=clear with low confidence; 3=cloudy with low confidence; 4=cloudy with medium confidence; 5=cloudy with high confidence (Source: Atmosphere ATBD); (Meanings: [0 1 2 3 4 5]) (Values: ['clear_with_high_confidence' 'clear_with_medium_confidence' 'clear_with_low_confidence' 'cloudy_with_low_confidence' 'cloudy_with_medium_confidence' 'cloudy_with_high_confidence']) | | cloud_flag_atm
CHUNKED | INTEGER_1(['Unlimited']) | Cloud Flag Atm
None | 1 | Number of layers found from the backscatter profile using the DDA layer finder. (Source: Atmosphere ATBD) | | cloud_fold_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | Cloud Folding Flag
None | 1 | Flag that indicates this profile likely contains cloud signal folded down from above 15 km to the last 2-3 km of the profile. See ATBD Table 3.9 for detailed flag value meanings (Source: Atmosphere ATBD); (Meanings: [0 1 2 3]) (Values: ['no_folding' 'goes5_indicates' 'profile_indicates' 'both_indicate']) | | column_od_asr | FLOAT(['Unlimited']) | Optical depth from ASR | 1 | Optical depth of atmosphere column | | CHUNKED | INVALID_R4B | None | | based on apparent surface
reflectance and the assumed actual
surface reflectance.
(Source: Atmosphere ATBD) | |-----------------------------|--|---------------------------------------|------------------------------|--| | column_od_asr_qf
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | Optical depth ASR quality
None | 1 | Total column optical depth from ASR quality flag. The total atmosphere column particulate optical depth can be computed from the apparent surface reflectance if the actual surface reflectance is well known. The flag indicates the surface type over which the flag is computed in the order from unable to compute (0 - no_surface_signal) to best quality (4=water). (Source: Atmosphere ATBD); (Meanings: [0 1 2 3 4]) (Values: ['no_signal' 'land' 'sea_ice' 'land_ice' 'water']) | | delta_time CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Atmosphere ATBD) | | dem_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | dem source flag
None | 1 | Indicates source of the DEM height. Values: 0=None, 1=Arctic, 2=Global, 3=MSS, 4=Antarctic. (Source: Atmosphere ATBD); (Meanings: [0 1 2 3 4]) (Values: ['none' 'arctic' 'global' 'mss' 'antarctic']) | | dem_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | DEM Height
None | meters | Best available DEM (in priority of Arctic/Antarctic/Global/MSS) value at the geolocation point. (Source: Atmosphere ATBD) | | density_pass1
CHUNKED | FLOAT(['Unlimited', 700])
INVALID_R4B | Density profile - pass1
None | 1 | Density profiles from pass 1.
(Source: Atmosphere ATBD Part II) | | density_pass2
CHUNKED | FLOAT(['Unlimited', 700])
INVALID_R4B | Density profile - pass2
None | 1 | Density profiles from pass 2.
(Source: Atmosphere ATBD Part II) | | ds_layers
COMPACT | INTEGER([10]) | Cloud Layers Dimension Scale
None | counts | Dimension scale indexing the cloud layers. (Source: Atmosphere ATBD) | | ds_va_bin_h
COMPACT | FLOAT([700]) | VA Bin Height Dimension Scale
None | meters | Dimension scale containing the heights of the vertically-aligned bins. (Source: Atmosphere ATBD) | | dtime_fac1
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | dead_time_factor1
None | 1 | Dead time correction factor for surface signal computed from radiometric lookup table. (Source: Atmosphere ATBD) | | dtime_fac2
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | dead_time_factor2
None | 1 | Dead time correction factor for surface signal computed from ATBD equation 2.1. (Source: Atmosphere ATBD) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude of the ATM histogram latitude | degrees_north | Latitude at the the top of the ATM histogram, WGS84, North=+, Derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | |----------------------------|--|--|---------------|--| | layer_attr
CHUNKED | INTEGER_1(['Unlimited', 10]) | Layer attribute flag
None | 1 | Layer attribute flag for each of the possible 10 layers. Indicates (0) no_layer (1) cloud, (2) aerosol or (3) unknown. (Source: Atmosphere ATBD); (Meanings: [0 1 2 3]) (Values: ['no_layer' 'cloud' 'aerosol' 'unknown']) | | layer_bot
CHUNKED | FLOAT(['Unlimited', 10])
INVALID_R4B | Height layer bottoms
None | meter | Height of
bottom of detected layers (Source: Atmosphere ATBD) | | layer_con
CHUNKED | INTEGER(['Unlimited',
10])
INVALID_I4B | Layer confidence flag
None | 1 | Layer confidence flag for each layer (Source: Atmosphere ATBD) | | layer_conf_dens
CHUNKED | FLOAT(['Unlimited', 10]) INVALID_R4B | Layer confidence from density
None | 1 | The measure layer confidence from density-dimension algorithm is calculated for each detected cloud layer, quantifies the confidence of detection of a given layer from the density values. Layer_conf_dens fall between zero and 1. Confidence close to 1 is high, close to zero is low. (Source: Atmosphere ATBD Part II, Section 11) | | layer_dens
CHUNKED | FLOAT(['Unlimited', 10]) | Layer Density
None | 1 | Layer Density
(Source: Atmosphere ATBD) | | layer_flag
CHUNKED | INTEGER_1(['Unlimited']) | Consolidated cloud flag
None | 1 | This flag is a combination of multiple flags (cloud_flag_atm, cloud_flag_asr, and bsnow_con) and takes daytime/nighttime into consideration. A value of 1 means clouds or blowing snow are likely present. A value of 0 indicates the likely absence of clouds or blowing snow. (Source: Atmosphere ATBD); (Meanings: [0 1]) (Values: ['likely_clear' 'likely_cloudy']) | | layer_ib
CHUNKED | FLOAT(['Unlimited', 10])
INVALID_R4B | Layer integrated backscatter
None | 1 | Layer integrated backscatter (Source: Atmosphere ATBD) | | layer_top
CHUNKED | FLOAT(['Unlimited', 10])
INVALID_R4B | Height layer tops
None | meters | Height of top of detected layers (Source: Atmosphere ATBD) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude of the ATM histogram longitude | degrees_east | Longitude at the the top of the ATM histogram, WGS84, East=+, derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | | msw_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | Multiple Scattering Warning Flag
None | 1 | Multiple Scattering warning flag. The multiple scattering warning flag (ATL09 parameter msw_flag) has values from -1 to 5 where zero means no multiple scattering and 5 the greatest. If no layers were detected, then msw_flag = 0. If blowing snow is detected and its estimated optical depth is greater than or equal to 0.5, then msw_flag = 5. If the blowing snow optical depth is less than 0.5, then msw_flag = 4. If | | | | | | no blowing snow is detected but there are cloud or aerosol layers detected, the msw_flag assumes values of 1 to 3 based on the height of the bottom of the lowest layer: < 1 km, msw_flag = 3; 1-3 km, msw_flag = 2; > 3km, msw_flag = 1. A value of -1 indicates that the signal to noise of the data was too low to reliably ascertain the presence of cloud or blowing snow. We expect values of -1 to occur only during daylight. (Source: Atmosphere ATBD); (Meanings: [-1 0 1 2 3 4 5]) (Values: ['cannot_determine' 'no_layers' 'layer_gt_3km' 'layer_between_1_and_3_km' 'layer_lt_1km' 'blow_snow_od_lt_0.5' 'blow_snow_od_gt_0.5']) | |------------------------------|-------------------------------------|--|--------|---| | ocean_surf_reflec
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Ocean Surface Reflectance
None | 1 | Ocean Surface Reflectance from
Eqn 4.10 based on the Cox-Munk
model.
(Source: Atmosphere ATBD) | | pce_mframe_cnt CHUNKED | UINT_4_LE(['Unlimited']) | PCE Major frame counter
None | counts | Major Frame Counter - The major frame counter is read from the DFC and starts counting at DFC POR. The counter is used to identify individual major frames across diag and science packets. This counter can go for about 2.7 years before rolling over. It is in the first time tag science packet. Used as part of the photon ID (Source: ATL02) | | prof_dist_x
CHUNKED | DOUBLE(['Unlimited']) | Along Track Distance
None | meters | Along-track distance from the equator crossing. (Source: ATL03g ATBD, Section 3.4) | | prof_dist_y
CHUNKED | FLOAT(['Unlimited']) | Across Track Distance from RGT
None | meters | Across-Track distance from the reference ground track. (Source: ATL03g ATBD, Section 3.4) | | range_to_top
CHUNKED | FLOAT(['Unlimited']) | Range
None | meters | Range from the spacecraft to the top of the atmosphere range window. (Source: Atmosphere ATBD) | | segment_id
CHUNKED | INTEGER(['Unlimited']) | along-track segment ID number.
None | 1 | A 7 digit number identifiying the along-track geolocation segment number. These are sequential, starting with 1 for the first segment after an ascending equatorial crossing node. (Source: ATL03 ATBD, Section 3.1) | | sig_count_hi
CHUNKED | INTEGER(['Unlimited']) | Count of Signa Heightsl - High
None | counts | Count of high-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_count_low
CHUNKED | INTEGER(['Unlimited']) | Count of Signal Heights - Low
None | counts | Count of low-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_count_med
CHUNKED | INTEGER(['Unlimited']) | Count of Signal Heights - Medium
None | counts | Count of medium-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_h_mean_hi
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Mean of SignalHeights - High
None | meters | Mean height of high-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_h_mean_low | FLOAT(['Unlimited']) | Mean of Signal Heights - Low | meters | Mean height of low-confidence signal | | CHUNKED | INVALID_R4B | None | | photons
(Source: ATL03 ATBD, Section 5) | |----------------------------|---------------------------------------|---------------------------------------|--------------|--| | sig_h_mean_med
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Mean of Signa Heightsl - Med
None | meters | Mean height of medium-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_h_sdev_hi
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | SDev of Signal Heights -High
None | meters | SDev of the heights of high-
confidence signal photons
(Source: ATL03 ATBD, Section 5) | | sig_h_sdev_low
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | SDev of Signal Heights -Low
None | meters | SDev of the heights of low-
confidence signal photons
(Source: ATL03 ATBD, Section 5) | | sig_h_sdev_med
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | SDev of Signa Heights -Med
None | meters | SDev of the heights of medium-
confidence signal photons
(Source: ATL03 ATBD, Section 5) | | snow_ice
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | Snow Ice Flag
None | 1 | NOAA snow-ice flag. 0=ice free water; 1=snow free land; 2=snow; 3=ice (Source: Atmosphere ATBD); (Meanings: [0 1 2 3]) (Values: ['ice_free_water' 'snow_free_land' 'snow' 'ice']) | | solar_azimuth
CHUNKED | FLOAT(['Unlimited']) | solar azimuth
None | degrees_east | The direction, eastwards from north, of the sun vector as seen by an observer at the laser ground spot. (Source: ATL03g ATBD) | | solar_elevation
CHUNKED | FLOAT(['Unlimited']) | solar elevation
None | degrees | Solar Angle above or below the plane tangent to the ellipsoid surface at the laser spot. Positive values mean the sun is above the horizon, while negative values mean it is below the horizon. The effect of atmospheric refraction is not included. This is a low precision value, with approximately TBD degree accuracy. (Source: ATL03g ATBD) | | surf_refl_true
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Estimated Surface Reflectance
None | 1 | The value of the clear-sky surface reflectivity to use in the computation of total column optical depth and cloud detection from the measures apparent surface reflectance (ASR). (Source: Atmosphere ATBD) | | surf_type
CHUNKED | INTEGER_1(['Unlimited', 5]) | surface type
None | 1 | Flags describing which surface types this interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, inland water. (Source: ATL03 ATBD, Section 4); (Meanings: [0 1]) (Values: ['not_type' 'is_type']) | | surf_type_igbp
CHUNKED | INTEGER_1(['Unlimited']) | IGBP Surface Type
None | 1 | IGBP Surface Type
(Source: Atmosphere ATBD, IGBP
Surface Type) | | surface_bin
CHUNKED | INTEGER(['Unlimited'])
INVALID_I4B | Surface bin
None | 1 | Vertially aligned, NRB bin number of
the detected surface return.
(Source: Atmosphere ATBD section
3.3.5) | | surface_conf
CHUNKED | FLOAT(['Unlimited']) | Surface signal confidence
None | 1 | The level of confidence in the surface signal magnitude and location for each beam. (1.0 - lowest confidence; 100.0 - highest confidence). | | | | | | (Source: Atmosphere ATBD section 3.3.5) | |----------------------------|--------------------------------------|--------------------------------------|-------------------------
--| | surface_h_dens
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Surface h from density
None | meters | Surface height from density (Source: Atmosphere ATBD) | | surface_height
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Surface height
None | meters | Height of the detected surface bin. (Source: Atmosphere ATBD section 3.3.5) | | surface_sig
CHUNKED | FLOAT(['Unlimited']) | Surface signal count
None | counts | Number of photons in the detected surface bin. (Source: Atmosphere ATBD section 3.3.5) | | surface_thresh
CHUNKED | FLOAT(['Unlimited']) | Surface signal threshold
None | photons | Surface signal threshold.
(Source: Atmosphere ATBD section 3.3.5) | | surface_width
CHUNKED | INTEGER(['Unlimited']) | Surface signal width
None | bins | The number of bins comprising the surface signal for each beam. (Source: Atmosphere ATBD section 3.3.5) | | tx_pulse_energy
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Transmit Pulse Energy
None | Joules | Transmit energy, from the laser internal energy monitor, split into perbeam measurements. (Source: ATL02 ATBD, Section 7.2) | | Group: /profile_x/low_rate | | Contains parameters related to atr | mosphere characteristic | at 1 hz | | data_rate | (Attribute) | Data in this group is stored at a 1h | z (1 per second) rate. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bsnow_con
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | Blowing snow confidence
None | 1 | Blowing snow confidence3=surface not detected; -2=no surface wind;-1=no scattering layer found; 0=no top layer found; 1=none-little; 2=weak; 3=moderate; 4=moderate-high; 5=high; 6=very high (Source: Atmosphere ATBD); (Meanings: [-3 -2 -1 0 1 2 3 4 5 6]) (Values: ['surface_not_detected' 'no_surface_wind' 'no_scattering_layer_found' 'no_top_layer_found' 'none_little' 'weak' 'moderate' 'moderate_high' 'high' 'very_high']) | | bsnow_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Blowing Snow layer thickness
None | meters | Blowing Snow layer thickness (height of top above surface) (Source: Atmosphere ATBD) | | bsnow_intensity CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Blowing Snow Intensity
None | meters/second | Blowing snow intensity defined as the average scattering ratio within the blowing snow layer times the 10 m wind speed. (Source: Atmosphere ATBD) | | bsnow_od
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Blowing snow OD
None | 1 | Blowing snow layer optical depth (Source: Atmosphere ATBD) | | bsnow_prob
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Blowing Snow Probability
None | 1 | The probability of blowing snow based on meteorological data. (Source: Atmosphere ATBD Section 4.5.1) | | bsnow_psc
CHUNKED | INTEGER_1(['Unlimited']) | Blowing snow PSC flag
None | 1 | Blowing snow PSC flag. Indicates the potential for polar stratospheric clouds to affect the blowing snow retrieval, where 0=none and 3=maximum. This flag is a function of month and hemisphere and is only | | | | | | applied poleward of 60 north and south. (Source: Atmosphere ATBD Section 4.5); (Meanings: [0 1 2 3]) (Values: ['none' 'slight' 'moderate' 'maximum_bsnow_PSC_affected']) | |------------------------|-------------------------------------|--|------------------------------|---| | cal_c
CHUNKED | FLOAT(['Unlimited']) | Calibration Constant
None | Photons*m^3 *sr / J | Calibration Constant (for each beam at 1 Hz) (Source: Atmosphere ATBD) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: telemetry) | | ds_va_bin_h
COMPACT | FLOAT([700]) | VA Bin Height Dimension Scale
None | meters | Dimension scale containing the heights of the vertically-aligned bins. (Source: Atmosphere ATBD) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude of the ATM histogram latitude | degrees_north | Latitude at the the top of the ATM histogram, WGS84, North=+, Derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude of the ATM histogram longitude | degrees_east | Longitude at the the top of the ATM histogram, WGS84, East=+, derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | | met_cldprs
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | cloud_top_pressure
pressure | Pa | Pressure of the highest cloud top at
this location from GEOS5 data
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_ps
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Surface Pressure pressure | Pa | Surface Pressure (Pa)
(Source: GEOS5 FPIT 3D
DFPITI3NVASM) | | met_qv10m
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | specific_humidity_at_10m specific_humidity | kg kg-1 | Specific humidity at 10 m above the displacement height (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_qv2m
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | specific_humidity_at_2m specific_humidity | kg kg-1 | Specific humidity at 2 m above the displacement height (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_slp
CHUNKED | FLOAT(['Unlimited']) | sea_level_pressure
sea_level_pressure | Pa | sea-level pressure (Pa)
(Source: GEOS5 FPIT 3D
DFPITI3NVASM) | | met_t10m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | temperature_at_10m
temperature | К | Temperature at 10m above the displacement height (K) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_t2m
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | temperature_at_2m
temperature | К | Temperature at 2m above the displacement height (K) (Source: GEOS5 FPIT 2D | | | | | | DFPITT1NXSLV) | |-----------------------------|-------------------------------------|---|------------|--| | met_tqi
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | cloud_ice
None | kg m-2 | Total column cloud ice (Kg/m2)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_tql
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | cloud_liquid_water
None | kg m-2 | Total column cloud liquid water (kg/m2) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_troppb
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | blended_tropopause_pressure
pressure | Pa | Blended tropopause pressure (pa)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_tropt
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | blended_tropopause_temperature
temperature | К | Tropopause temperature (k)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_ts
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | surface_temperature
temperature | К | Surface skin temperature (K)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_u10m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Eastward_wind_at_10m eastward_wind | m s-1 | Eastward wind at 10m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_u2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Eastward_wind_at_2m eastward_wind | m s-1 | Eastward wind at 2m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_u50m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Eastward_wind_at_50m
eastward_wind | m s-1 | Eastward wind at 50m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_v10m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Northward_wind_at_10m
northward_wind | m s-1 | Northward wind at 10m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_v2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Northward_wind_at_2m
northward_wind | m s-1 | Northward wind at 2m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_v50m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | northward_wind_at_50m
northward_wind | m s-1 | Northward wind at 50m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | mol_backs_folded
CHUNKED | FLOAT(['Unlimited', 700]) | Folded molecular transmission profile None | m-1 sr-1 | Folded molecular transmission profile, 30 m resolution, , m-1 sr-1; 20 km to -1 km (equation 3.17) (Source: Atmosphere ATBD) | | mol_backscatter
CHUNKED | FLOAT(['Unlimited', 700]) | Molecular backscatter profile
None | m-1 sr-1 | Molecular backscatter profile, 30 m resolution, 20 km to -1 km (Source: Atmosphere ATBD) | | molec_bkscat_p
CHUNKED | FLOAT(['Unlimited', 700]) | Pressure profile
None | Pa | Pressure profiles from 20 km to -1 km (Source: Atmosphere ATBD) | |
molec_bkscat_rh
CHUNKED | FLOAT(['Unlimited', 700]) | Relative humidity profiles
None | percentage | Relative humidity profiles from 20 km to -1 km (Source: Atmosphere ATBD) | | molec_bkscat_t
CHUNKED | FLOAT(['Unlimited', 700]) | Temperature profile
None | К | Temperature profiles from 20 km to -1 km (Source: Atmosphere ATBD) | | molec_trans
CHUNKED | FLOAT(['Unlimited', 700]) | Molecular transmission profile None | 1 | Molecular transmission profile, 30 m resolution, 20 km to -1 km | | | | | | (Source: Atmosphere ATBD) | |-----------------------------------|-----------------------------|--|--------------------------|---| | segment_id
CHUNKED | INTEGER(['Unlimited']) | along-track segment ID number.
None | 1 | A 7 digit number identifying the along-track geolocation segment number. These are sequential, starting with 1 for the first segment after an ascending equatorial crossing node. (Source: ATL03 ATBD, Section 3.1) | | surf_type
CHUNKED | INTEGER_1(['Unlimited', 5]) | surface type
None | 1 | Flags describing which surface types this interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, inland water. (Source: ATL03 ATBD, Section 4); (Meanings: [0 1]) (Values: ['not_type' 'is_type']) | | Group: /quality_assessment | t | Contains quality assessment data summary data. | . This may include QA co | ounters, QA along-track data and/or QA | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | qa_granule_fail_reason
COMPACT | INTEGER([1]) | Granule Failure Reason
None | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD Failure; 4=TBD_Failure; 5=other failure. (Source: Operations); (Meanings: [0 1 2 3 4 5]) (Values: ['no_failure' 'PROCESS_ERROR' 'INSUFFICIENT_OUTPUT' 'failure_3' 'failure_4' 'OTHER_FAILURE']) | | qa_granule_pass_fail
COMPACT | INTEGER([1]) | Granule Pass Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. (Source: Operations); (Meanings: [0 1]) (Values: ['PASS' 'FAIL']) | | Group: /quality_assessment | t/profile_x | Contains per-profile quality assess | sment data. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | asr_avg
CONTIGUOUS | FLOAT([1]) | ASR Average
None | 1 | Apparent surface reflectance average (Source: Atmosphere ATBD) | | asr_max
CONTIGUOUS | FLOAT([1]) | ASR Maximum
None | 1 | Apparent surface reflectance maximum (Source: Atmosphere ATBD) | | asr_min
CONTIGUOUS | FLOAT([1]) | ASR Minimum
None | 1 | Apparent surface reflectance minimum (Source: Atmosphere ATBD) | | asr_std
CONTIGUOUS | FLOAT([1]) | ASR Standard Deviation
None | 1 | Apparent surface reflectance stdev (Source: Atmosphere ATBD) | | cab_mol_avg
CONTIGUOUS | FLOAT([1]) | CAB molec Avg
None | 1 | CAB/molec average
(Source: Atmosphere ATBD) | | cld_asr_pct
CONTIGUOUS | FLOAT([1]) | Cloud ASR Percent
None | percent | Percent time clouds from ASR were detected (Source: Atmosphere ATBD) | | cld_avg
CONTIGUOUS | FLOAT([1]) | Cloud layer average
None | 1 | Cloud layer average
(Source: Atmosphere ATBD) | | cld_max
CONTIGUOUS | INTEGER([1]) | Cloud layer max
None | 1 | Cloud layer max
(Source: ATL04) | | cld_min | INTEGER([1]) | Cloud layer min | 1 | Cloud layer min | | CONTIGUOUS | | None | | (Source: ATL04) | |--------------------------|-------------|--------------------------|------------------------------|---| | cld_pct
CONTIGUOUS | FLOAT([1]) | Cloud Percent
None | percent | Percent time clouds were detected (Source: Atmosphere ATBD) | | cod_avg
CONTIGUOUS | FLOAT([1]) | COD Average
None | 1 | Cloud Optical Depth average
(Source: Atmosphere ATBD) | | cod_max
CONTIGUOUS | FLOAT([1]) | COD Maximum
None | 1 | Cloud Optical Depth maximum (Source: Atmosphere ATBD) | | cod_min
CONTIGUOUS | FLOAT([1]) | COD Minimum
None | 1 | Cloud Optical Depth minimum (Source: Atmosphere ATBD) | | delta_time
CONTIGUOUS | DOUBLE([1]) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: telemetry) | | osr_avg
CONTIGUOUS | FLOAT([1]) | OSR Average
None | 1 | Ocean surface reflectance average (Source: Atmosphere ATBD) | | osr_max
CONTIGUOUS | FLOAT([1]) | OSR Maximum
None | 1 | Ocean surface reflectance maximum (Source: Atmosphere ATBD) | | osr_min
CONTIGUOUS | FLOAT([1]) | OSR Minimum
None | 1 | Ocean surface reflectance minimum (Source: Atmosphere ATBD) | | surf_pct
CONTIGUOUS | FLOAT([1]) | Percent Surface
None | percent | Percent time surface height was detected (Source: ATL04) |