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1.	Overview			

The	AMSR2	sea	ice	standard	level	3	products	include	sea	ice	concentration,	snow	depth	on	sea	
ice,	and	sea	ice	drift.	It	is	similar	to	the	AMSR-E	products,	with	adjustments	for	the	change	in	
sensor.	Much	of	the	content	here	is	adapted	from	the	AMSR-E	ATBD.	The	AMSR2	standard	sea	ice	
concentration	product	is	generated	using	the	enhanced	NASA	Team	(NT2)	algorithm	described	by	
Markus	and	Cavalieri	(2000,	2009),	the	snow	depth	is	produced	from	the	algorithm	described	by	
Markus	and	Cavalieri	(1998)	for	both	hemispheres,	but	excluding	the	Arctic	perennial	ice	regions,	
and	the	sea	ice	drift	is	produced	from	an	algorithm	described	by	Liu	and	Cavalieri	(1998).	
Additionally,	the	difference	between	the	AMSR2	Bootstrap	(ABA)	and	the	NT2	retrieved	
concentrations	(ABA-NT2)	are	archived.	These	products	together	with	AMSR2	calibrated	
brightness	temperatures	(TBs)	are	mapped	to	the	same	polar	stereographic	projection	used	for	
SSMI	data	to	provide	the	research	community	consistency	and	continuity	with	the	existing	32-	
year	Nimbus	7	SMMR	and	DMSP	SSMI	sea	ice	concentration	products.	The	TB	grid	resolutions	are	
as	follows:	(a)	TBs	for	all	AMSR2	channels:	25-km,	(b)	TBs	for	the	18,	23,	36,	and	89	GHz	channels:	
12.5-km,	(c)	TBs	for	the	89	GHz	channels:	6.25-km.	All	of	these	TB	products	are	stored	as	a	
composite	of	(i)	daily-averaged	ascending	orbits	only,	(ii)	daily-averaged	descending	orbits	only,	
and	(iii)	all	orbits	creating	a	full	daily	average.	Sea	ice	concentrations	are	produced	at	12.5-km	and	
25-km	resolutions	and	stored	as	a	composite	of	daily-averaged	ascending	orbits,	daily-averaged	
descending	orbits,	and	all	orbits	for	a	full	daily	average,	similar	to	the	TB	products.	Snow	depth	on	
sea	ice	is	produced	as	a	5-day	average	at	a	resolution	of	12.5	km.	Sea	ice	drift	is	also	a	five-day	
product	computed	at	a	resolution	of	6.25-km,	but	mapped	at	a	resolution	of	100-km.	

The	algorithms	described	below	are	essentially	the	same	as	those	developed	for	AMSR-E.	The	
primary	change	for	AMSR2	is	an	adjustment	to	the	AMSR2	brightness	temperatures	to	be	
consistent	with	the	AMSR-E	values.	This	adjustment	is	summarized	in	Section	3.2.4	

2.	Background	

2.1	Experimental	objective	

The	objective	of	the	AMSR2	sea	ice	products	is	to	provide	high-quality	estimates	of	important	
geophysical	sea	ice	parameters,	including:	concentration,	snow	depth	on	sea	ice,	and	drift.	These	
fields	will	continue	the	time	series	that	began	with	AMSR-E	in	2002.	With	the	addition	of	
calibrated	AMSR2	parameters,	the	AMSR	(including	both	AMSR-E	and	AMSR2)	will	extent	at	least	
15	years,	providing	a	higher	quality	complement	to	the	long-term	nearly	40-year	record	of	passive	
microwave	sea	ice	estimates	from	SMMR,	SSMI,	and	SSMIS.	

2.2	Historical	prospective	

Sea	ice	is	a	key	climate	indicator	due	to	its	high	albedo	that	reflects	incoming	solar	radiation,	its	
role	as	a	physical	barrier	to	heat	and	moisture	transfer	between	the	ocean	and	atmosphere,	and	
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its	role	in	biogeochemical	cycles.	It	is	also	plays	a	major	role	in	polar	ecosystems	and	in	lives	of	
indigenous	peoples	of	the	Arctic.	Changes	in	Arctic	sea	ice	over	the	past	nearly	four	decades	have	
been	dramatic,	with	a	loss	of	over	a	third	of	summer	ice	cover,	a	large	decline	in	ice	thickness,	
and	a	nearly-complete	loss	of	old	ice.	Satellite	remote	sensing	has	been	the	primary	tool	for	
mapping	sea	ice	concentration,	extent,	and	age	since	the	late	1970s.	The	consistent	and	
continuous	long-term	multichannel	microwave	radiometer	sea	ice	record	began	in	October	1978	
with	the	Scanning	Multichannel	Microwave	Radiometer	(SMMR)	on	the	NASA	Nimbus-5	satellite,	
followed	by	a	series	of	Special	Sensor	Microwave	Imagers	(SSMI)	and	Special	Sensor	Microwave	
Imager/Sounders	(SSMIS)	instruments	on	U.S.	Defense	Meteorological	Satellite	Program	(DMSP)	
platforms.	The	SSMI	and	SSMIS	record	began	in	July	1987	and	continues	today	(through	mid-
2017).		These	sensors	provide	the	continuous	and	consistent	long-term	record	of	sea	ice	that	is	
now	nearly	40	years	long.	Starting	in	2002,	the	Advanced	Microwave	Scanning	Radiometer	for	the	
Earth	Observing	System	(AMSR-E),	a	JAXA	sensor	launched	on	the	NASA	Aqua	satellite,	provides	
improved	spatial	resolution	and	other	advances	over	the	SMMR-SSMI-SSMIS	record.	The	
Advanced	Microwave	Sounding	Radiometer	2	(AMSR2)	onboard	the	first	Global	Change	
Observation	Mission	–	Water	(GCOM-W1)	satellite	includes	similar	characteristics	as	AMSR-E	with	
slightly	better	spatial	resolution	and	other	improvements.	The	AMSR-E	and	AMSR2	sensor	
provide	a	15+	year	record	of	enhanced	sea	ice	retrievals	that	complement	the	longer	record.			

3.	Theoretical	Basis	of	Algorithm	

3.1	Physics	of	the	problem	

Passive	microwave	radiation	is	naturally	emitted	by	the	Earth’s	surface	and	overlying	atmosphere.	
This	emission	is	a	complex	function	of	the	microwave	radiative	properties	of	the	emitting	body	
(Hallikainen	and	Winebrenner,	1992).	However,	for	the	purposes	of	microwave	remote	sensing,	
the	relationship	can	be	described	as	a	simple	function	of	the	physical	temperature	(T)	of	the	
emitting	body	and	the	emissivity	(ε)	of	the	body.		

	 	 	 	 	 	 TB	=	ε*T																																																																								(1)	

TB	is	the	brightness	temperature	and	is	the	parameter	(after	calibrations)	retrieved	by	satellite	
sensors	and	is	the	input	parameter	to	passive	microwave	sea	ice	concentration	algorithms.		

The	microwave	electromagnetic	properties	of	sea	ice	are	a	function	of	the	physical	properties	of	
the	ice,	such	as	crystal	structure,	salinity,	temperature,	or	snow	cover.	In	addition,	open	water	
typically	has	an	electromagnetic	emission	signature	that	is	distinct	from	sea	ice	emission	(Eppler	
et	al.,	1992).	These	properties	form	the	basis	for	passive	microwave	retrieval	of	sea	ice	
concentrations.	

Specifically,	the	unfrozen	water	surface	is	highly	reflective	in	much	of	the	microwave	regime,	
resulting	in	low	emission	(Figure	5).	In	addition,	emission	from	liquid	water	is	highly	polarized.	
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When	salt	water	initially	freezes	into	first-year	(FY)	ice	(ice	that	has	formed	since	the	end	of	the	
previous	melt	season),	the	microwave	emission	changes	substantially;	the	surface	emission	
increases	and	is	only	weakly	polarized.	Over	time	as	freezing	continues,	brine	pockets	within	the	
sea	ice	drain,	particularly	if	the	sea	ice	survives	a	summer	melt	season	when	much	of	the	brine	is	
flushed	by	melt	water.	This	multi-year	(MY)	ice	has	a	more	complex	signature	with	characteristics	
generally	between	water	and	first-year	ice.	Other	surface	features	can	modify	the	microwave	
emission,	particularly	snow	cover,	which	can	scatter	the	ice	surface	emission	and/or	emit	
radiation	from	within	the	snow	pack.	Atmospheric	emission	also	contributes	to	any	signal	
received	by	a	satellite	sensor.	These	issues	result	in	uncertainties	in	the	retrieved	concentrations,	
which	are	discussed	further	below.	

Because	of	the	complexities	of	the	sea	ice	surface	as	well	as	surface	and	atmospheric	emission	
and	scattering,	direct	physical	relationships	between	the	microwave	emission	and	the	physical	
sea	ice	concentration	are	not	feasible.	Thus,	the	standard	approach	is	to	derive	concentration	
through	empirical	relationships.	These	empirically-derived	algorithms	take	advantage	of	the	fact	
that	brightness	temperature	in	microwave	frequencies	tend	to	cluster	around	consistent	values	
for	pure	surface	types	(100%	water	or	100%	sea	ice).	Concentration	can	then	be	derived	using	a	
simple	linear	mixing	equation	(Zwally	et	al.,	1983)	for	any	brightness	temperature	that	falls	
between	the	two	pure	surface	values:		

	 	 	 	 	 TB	=	TICI	+	TO(1-CI)																																																												(2)	

Where	TB	is	the	observed	brightness	temperature,	TI	is	the	brightness	temperature	for	100%	sea	
ice,	TO	is	the	brightness	temperature	for	open	water,	and	CI	is	the	sea	ice	concentration.		

In	reality,	such	an	approach	is	limited	by	the	surface	ambiguities	and	atmospheric	emission.	Using	
combinations	of	more	than	one	frequency	and	polarization	limits	these	effects,	resulting	in	better	
discrimination	between	water	and	different	ice	types	and	a	more	accurate	concentration	
estimate.	

3.2	Mathematical	description	

3.2.1	Sea	ice	concentration	

The	two	ratios	of	brightness	temperatures	used	in	the	original	NASA	Team	algorithm	(Cavalieri	et	
al.	1984;	Gloersen	and	Cavalieri	1986;	Cavalieri	et	al.	1995)	as	well	as	in	the	NT2	approach	are	the	
polarization	

	 	 	 	 PR(ν)	=	[TB(νV)	−	TB(ν	)]	/	[TB(νV)	+	TB(νH)]	 	 	 (3)	

and	the	spectral	gradient	ratio	

	 	 	 	 GR(ν1pν2p)	=	TB(ν1p)	−	TB(ν2p)]	/	[TB(ν1p)	+	TB(ν2p)]	 (4)	
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where	TB	is	the	brightness	temperature	at	frequency	ν	for	the	polarized	component	p	(vertical	(V)	
or	horizontal	(H)).	

Figure	1	(top)	shows	a	typical	scatterplot	of	PR(19)	versus	GR(37V19V	)	for	September	conditions	
in	the	Weddell	Sea.	The	NT	algorithm	identifies	two	ice	types	that	are	associated	with	first-year	
and	multiyear	ice	in	the	Arctic	and	ice	types	A	and	B	in	the	Antarctic	(as	shown	in	Figure	1	(top)).	
The	A-B	line	represents	100%	ice	concentration.	The	distance	from	the	open	water	point	(OW)	to	
line	A-B	is	a	measure	of	the	ice	concentration.	In	this	algorithm,	the	primary	source	of	error	is	
attributed	to	conditions	in	the	surface	layer	such	as	surface	glaze	and	layering	(Comiso	et	al.	
1997),	which	can	significantly	affect	the	horizontally	polarized	19	GHz				brightness	temperature	
(Matzler	et	al.	1984)	leading	to	increased	PR(19)	values	and	thus	an	underestimate	of	ice	
concentration.	In	the	following	discussion,	we	will	refer	to	these	effects	as	surface	effects.	In	
Figure	1	(top),	pixels	with	significant	surface	effects	tend	to	cluster	as	a	cloud	of	points	(labeled	C)	
away	from	the	100%	ice	concentration	line	A-B	resulting	in	an	underestimate	of	ice	concentration	
by	the	NT	algorithm.	The	use	of	horizontally	polarized	channels	makes	it	imperative	to	resolve	a	
third	ice	type	to	overcome	the	difficulty	of	surface	effects	on	the	emissivity	of	the	horizontally	
polarized	component	of	the	brightness	temperature.	

We	make	use	of	GR(89V19V)	and	GR(89H19H)	to	resolve	the	ambiguity	between	pixels		with	true	
low	ice	concentration	and	pixels	with	significant	surface	effects.	A	plot	of	these	two	ratios	are	
found	to	form	narrow	clusters	except	for	areas	where	surface	effects	decrease	TB(19H)	and	
consequently	increase	GR(89H19H)	(Figure	1	(bottom)).	Values	of	high	GR(89V19V	)	and	high	
GR(89H19H)	are	indicative	of	open	water.	The	range	of	GR(89H19H)	values	is	larger	because	of	
the	greater	dynamic	range	between	ice	and	water	for	the	horizontally	polarized	components.	
With	increasing	ice	concentration,	the	two	ratios	have	more	similar	values.	The	narrow	cluster	of	
pixels	adjacent	to	the	diagonal	shown	in	Figure	1	(bottom)	represents	100%	ice	concentration	
with	different	GR	values	corresponding	to	different	ice	types.	When	surface			effects	come	into	
play,	points	deviate	from	this	narrow	cluster	towards	increased	GR(89H19H)	values	(cloud	of	
points	to	the	right	of	the	diagonal)	while	GR(89V19V	)	changes	little	or	remains	constant.	This	
cloud	of	points	labeled	C	in	Figure	3	(bottom)	also	corresponds	to	the	cluster	of	points	labeled	C	
in	Figure	3	(top).	The	difference,	therefore,	between	these	two	GRs	(ΔGR)	is	used	as	a	measure	of	
the	magnitude	of	surface	effects.	Based	on	this	analysis	we	introduce	a	new	ice	type	C,	which	
represents	ice	having	significant	surface	effects.	For	computational	reasons	we	rotate	the	axes	in	
PR-GR	space	(Figure	1	(top))	by	an	angle	φ	so	the	A-B	line	is	vertical.	This	makes	the	rotated	PRs	
(PRR(19)	and	PRR(89))	independent	of	ice	types	A	and	B	(first-year	and	multiyear	for	the	Arctic).	
The	use	of	the	89	GHz	data	requires	a	correction	for	atmospheric	effects.	This	is	accomplished	
through	an	additional	AMSR2	variable,	PR(89).	

The	response	of	the	brightness	temperatures	to	different	weather	conditions	is	calculated	using	
an	atmospheric	radiative	transfer	model	(Kummerow	1993).	Input	data	into	the	model	are	the	
emissivities	of	first-year	sea	ice	under	winter	conditions	taken	from	Eppler	et	al.	(1992)	with	
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modifications	to	achieve	agreement	between	modeled	and	observed	ratios.	Atmospheric	profiles	
used	as	another	independent	variable	in	the	algorithm,	having	different	cloud	properties,	
specifically	cloud	base,	cloud	top,	cloud	liquid	water	are	taken	from	Fraser	et	al.	(1975)	and	
average	atmospheric	temperatures	and	humidity	profiles	for	summer	and	winter	conditions	are	
taken	from	Antarctic	research	stations.	These	atmospheric	profiles	are	based	on	climatology	and	
are	assumed	valid	for	both	hemispheres.	

	

Figure	1:	Top:	GR(37V	19V	)	versus	PR(19)	for	the	Weddell	Sea	on	September	15,	1992.	The	gray	
circles	represent	the	tiepoints	for	the	ice	types	A	and	B	as	well	as	for	open	water	as	used	by	the	NT	
algorithm.	Label	C	indicates	pixels	with	significant	surface	effects.	Φ	is	the	angle	between	the	y-
axis	and	the	A-B	line.	Bottom:	GR(85V	19V	)	versus	GR(85H19H).	The	ice	types	A	and	B	are	close	to	
the	diagonal.	The	amount	of	layering	corresponds	to	the	horizontal	deviation	from	this	line	
towards	label	C.	Taken	from	Markus	and	Cavalieri	[2000].	

The	plots	of	ΔGR	versus	PRR	(19)	(Figure	2a)	and	ΔGR	versus	PRR(89)	(Figure	2b)	illustrate	the	
algorithm	domain.	The	gray	symbols	indicate	the	tie-points	with	the	different	atmospheres	for	
the	three	surface	types	(A,	C,	and	OW).	They	also	illustrate	that	the	effect	of	weather	is	well	
modeled.	For	example,	the	cluster	of	open	water	values	is	mainly	the	result	of	changing	
atmospheric	conditions.	The	modeled	atmospheres	adequately	span	the	lengths	of	the	OW	
clusters.	A	comparison	of	Figures	B4a	and	B4b	also	shows	how	much	more	the	89	GHz	data	are	
affected	by	the	atmosphere	compared	to	the	19	GHz	data.	
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Figure	2	(a)	ΔGR	versus	PRR	(19)	and	(b)	ΔGR	versus	PRR(89)	for	September	15,	2008.	The	gray	
symbols	represent	the	NT2	tie	

We,	then,	calculate	brightness	temperatures	for	all	possible	ice	concentration	combinations	in	
1%	increments	and	for	each	of	those	solutions	calculate	the	ratios	PRR	(19),	PRR	(89),	and	ΔGR.	
This	creates	a	prism	in	which	each	element	contains	a	vector	with	the	three	ratios	(Figure	3).	
For	each	AMSR2	pixel	PRR	(19),	PRR	(89),	and	ΔGR	are	calculated	from	the	observed	brightness	
temperatures.	Next,	we	move	through	this	prism	comparing	the	observed	three	ratios	with	the	
modeled	ones.	The	indices	where	the	differences	are	smallest	will	determine	the	final	ice	
concentration	combination	and	weather	index.	The	next	section	will	provide	detailed	
information	about	the	implementation.	

Because	of	the	unique	signature	of	new	ice	in	the	microwave	range,	we	solve	for	new	ice	
instead	of	ice	type	C	for	selected	pixels.	Using	a	GR(37V19V)	threshold	of	–0.02	we	either	
resolve	ice	type	C	(for	pixels	where	GR(37V19V)	is	below	this	threshold)	or	thin	ice	(for	pixels	
where	GR(37V19V)	is	above	this	threshold).	Areas	of	ice	type	C	and	thin	ice	are	mutually	
exclusive	because	thin	ice	has	little,	if	any,	snow	cover.	A	limitation,	of	course,	is	that	we	cannot	
resolve	mixtures	of	thin	ice	and	thicker	ice	with	layering	in	its	snow	cover.	

3.2.1.1	Implementation	of	the	concentration	algorithm	

In	contrast	to	other	operational	sea	ice	concentration	algorithms	using	daily	averaged	
brightness	temperatures	as	input,	the	AMSR-E	NT2	concentrations	are	calculated	from	
individual	swath	(Level	2)	data	from	which	daily	maps	are	made	by	averaging	these	swath	ice	
concentrations.	Using	swath	brightness	temperatures	is	particularly	critical	for	the	NT2	
algorithm	and	its	atmospheric	correction.	The	atmospheric	influence	on	the	brightness	
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temperatures	is	non	linear	and	by	using	average	brightness	temperatures	we	would	dilute	the	
atmospheric	signal.	The	ice	concentration	algorithm	is	implemented	as	follows:	

1.	Generate	look-up	tables:	For	each	AMSR	channel	with	frequency	ν	and	polarization	p	
calculate	brightness	temperature	for	each	ice	concentration-weather	combination	(using	TBow,	
TBA/FY	,	TBC/thin	as	given	in	the	Appendix	of	Markus	and	Cavalieri	(2009)):	

TBca,cc,wx(ν	p)	=	(1	−	CA	−	CC)	•	TBow(νpWx)	+	CA	•	TBA/FY	(νpWx)	+	CC	•	TBC/thin	(νpWx)		 (5)	

where	CA	refers	to	the	ice	type	A/B	concentration	(FY/MY	for	Arctic),	CC	to	ice	type	C	
concentration,	and	Wx	to	the	weather	index.	Ice	concentrations	are	between	0	and	100	in	1%	
increments,	weather	indices	are	between	1	and	12	corresponding	to	the	tables	in	the	Appendix	
of	Markus	and	Cavalieri	(2009).	

	

Figure	3.		Flow	diagram	of	the	NT2	algorithm	(from	Markus	and	Dokken	2002).	
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2.	From	these	TBs	calculate	ratios	creating	the	look---up	tables,	e.g.	LUT	PR19(CA,CC,Wx)	etc.:	

	

LUT	PR19(CA,CC,Wx)	=	[TBca,cc,wx(37V)	−	TBca,cc,wx(19V)]	x	sinφ19	/	[TBca,cc,wx(37V)	+	
TBca,cc,wx(19V)]	+	[TBca,cc,wx(19V)	−	TBca,cc,wx(19H)]	x	cosφ19	/	[TBca,cc,wx(19V)	+	
TBca,cc,wx(19H)]	 	 	 	 	 	 	 	 	 	 (6)	

LUTPR89(ca,	cc,wx)	=	[TBca,cc,wx(37V)	−	TBca,cc,wx(19V)]	x	sinφ89	TBca,cc,wx(37V)	+	
TBca,cc,wx(19V)	+	[TBca,cc,wx(89V)	−	TBca,cc,wx(89H)]	x	cosφ89	/	[TBca,cc,wx(89V)	+	
TBca,cc,wx(89H)]	 	 	 	 	 	 	 	 	 	 (7)	

If	GR(37V19V)	<	-0.02	we	solve	for	ice	type	C	using	ΔGR	as	our	third	variable,	i.e.,	

LUTdGR(ca,	cc,wx)	=	[TBca,cc,wx(89H)	−	TBca,cc,wx(19H)]	/	[TBca,cc,wx(89H)	+	
TBca,cc,wx(19H)]	 −	[TBca,cc,wx(89V)	−	TBca,cc,wx(19V)]	/	[TBca,cc,wx(89V)	+	
TBca,cc,wx(19V)]	 (8)	

Whereas	for	pixels	where	GR(37V19V)	>	-0.02	we	solve	for	thin	ice	using	the	standard	
GR(37V19V)	as	suggested	by	Cavalieri	(1994),	i.e.,	

LUTdGR(ca,	cc,wx)	=	[TBca,cc,wx(37V)	−	TBca,cc,wx(19V)]/[TBca,cc,wx(37V)		
	 	 	 +	TBca,cc,wx(19V)]	 	 	 	 	 	 	 (9)	

Each	of	these	arrays	has	the	dimensions	of	101	x	101	x	12	where,	of	course,	the	total	ice	
concentration	(ca	+	cc)	cannot	exceed	100.	

3.	For	each	pixel	i	we	have	the	actual	measured	AMSR-E	brightness	temperatures	(TBi(νp))	

4.	Calculate	same	ratios	from	these	brightness	temperatures	as	in	step	2	(PRi(19),	etc.).	

5.	Compare	these	observed	ratios	with	each	of	the	ratios	in	the	look-up	tables	looping	through	
all	ice	concentration-weather	combinations,	i.e.,	

	 δ=	(PRi(19)−LUTPR19(ca,	cc,wx))2+(PRi(89)−LUTPR89(ca,	cc,wx))2	
	 	 +(ΔGRi−LUT	dGR(ca,	cc,wx))2	 	 	 	 	 	 	 (10)	

6.	The	indices	ca,	cc,	wx	where	δ	is	minimal	determine	the	ice	concentration	(and	weather	
index),	i.e.:	

	 	 	 	 CT	=	CAminδ	+	CCminδ	 	 	 	 	 	 (11)		
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3.2.1.2	Land	Spillover	Correction	

Although	a	land	mask	is	applied	to	the	ice	concentration	maps,	land	spillover	still	leads	to	
erroneous	ice	concentrations	along	the	coast	lines	adjacent	to	open	water.	This	makes	
operational	usage	of	these	maps	cumbersome.	Therefore,	we	apply	a	land	spillover	correction	
scheme	on	the	maps.	The	difficulty	is	to	delete	all	clearly	erroneous	ice	concentration	while	at	
the	same	time	preserving	actual	ice	concentrations,	as	for	example,	along	the	margins	of	
coastal	polynyas.	We	apply	a	five-step	procedure.	

1.	Classify	all	pixels	of	the	polar-stereographic	grid	with	respect	to	the	distance	to	coast.	Ocean	
pixels	directly	along	the	coast	are	classified	by	1,	whereas	pixels	farther	away	are	2	and	3.	Open	
ocean	pixels	are	zero.	Land	pixels	directly	along	the	coast	are	classified	as	4	and	pixels	farther	
away	have	increasing	values.	

2.	All	pixels	with	classes	1	or	2	will	be	assessed	for	erroneous	sea	ice	concentrations	due	to	land	
spillover	by	analyzing	the	7	by	7	pixel	neighborhood.	The	area	of	the	neighborhood	(7	pixels	or	
87.5	km)	needs	to	be	greater	than	the	AMSR2	antenna	pattern.	Pixels	with	values	of	3	and	0	will	
not	be	changed.	

3.	Check	whether	all	class	3	pixels	in	7-pixel	neighborhood	are	open	water	(if	so,	set	ice	
concentration	to	0).	

4.	Calculate	an	average	sea	ice	concentration	for	the	7	by	7	pixel	box	assuming	all	ocean	pixels	
have	zero	ice	concentration	and	all	land	pixels	have	an	ice	concentration	of	90%.	This	
approximates	a	theoretical	concentration	caused	by	land	spillover	only.	

5.	If	the	AMSR2	ice	concentration	is	less	than	or	equal	to	this	value,	set	pixel	at	center	of	box	to	
open	water.	

Figure	4	shows	an	example	ice	concentration	with	and	without	the	land	spillover	correction.	

3.2.1.3	Reduction	of	Atmospheric	Effects		

The	NT2	algorithm	has	an	atmospheric	correction	scheme	as	an	inherent	part	of	the	algorithm.	
It	provides	weather-corrected	sea	ice	concentrations	through	the	utilization	of	a	forward	
atmospheric	radiative	transfer	(RT)	model.	However,	to	eliminate	remaining	severe	weather	
effects	over	open	ocean,	two	weather	filters	based	on	the	spectral	gradient	ratio	are	
implemented	using	threshold	values	similar	to	those	used	by	the	NT	algorithm	(Gloersen	and	
Cavalieri	1986;	Cavalieri	et	al.	1995).	However,	the	advantage	of	the	RT	atmospheric	correction	
is	that	not	only	are	spurious	ice	concentrations	over	the	open	ocean	removed,	but	atmospheric	
corrections	are	applied	to	ice	covered	portions	of	the	ocean.	
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	 Figure	4.	Map	of	ice	concentration	with	and	without	land	spillover	correction.	

Figure	5	shows	AMSR-E	sea	ice	concentration	maps	for	the	Sea	of	Okhotsk.	Figure	5a	shows	the	
ice	concentration	map	if	PRR	(19),	PRR	(89),	and	ΔGR	are	used	without	any	weather	correction.	
Figure	5b	shows	the	ice	concentration	map	with	the	NT2	weather	correction.	The	differences	
between	Figure	5a	and	5b	are	shown	in	Figure	5d	and	illustrate	the	effect	of	the	weather	
correction	not	only	over	the	open	ocean,	but	also	over	the	sea	ice.	More	severe	weather	effects	
over	the	open	ocean	(for	example,	in	the	bottom	right	corner)	are	finally	removed	by	the	NT	
weather	filters	(Figure	5c).	The	threshold	for	the	GR(37V19V)	NT	weather	filter	(Gloersen	and	
Cavalieri	1986)	is	0.05,	where	the	threshold	for	the	GR(22V19V)	NT	weather	filter	(Cavalieri	et	
al.	1995)	is	0.045.	If	the	respective	GR	values	exceed	these	thresholds,	the	sea	ice	
concentrations	are	set	to	zero.	Figure	5e	shows	the	difference	in	ice	concentrations	between	
the	retrievals	using	only	the	NT2	weather	correction	and	the	retrievals	using	both	the	NT2	
correction	and	the	NT	filters.	A	slight	change	along	the	ice	edge	is	observed.	

Even	with	both	the	atmospheric	correction	scheme	and	the	GR	filters,	we	still	had	problems	
with	residual	weather	contamination	particularly	at	low	latitudes.	A	filter	based	on	monthly	
climatological	sea	surface	temperatures	(SSTs)	from	the	National	Oceanic	and	Atmospheric	
Administration	(NOAA)	ocean	atlas,	used	earlier	by	Cavalieri	et	al.	(1999),	was	employed	to	
eliminate	these	low-latitude	spurious	ice	concentrations.	In	the	Northern	Hemisphere,	any	pixel	
where	the	monthly	SST	is	greater	than	278	K,	the	ice	concentration	is	set	to	zero	throughout	
the	month;	whereas	in	the	Southern	Hemisphere,	wherever	the	monthly	SST	is	greater	than	
275	K,	the	ice	concentration	is	set	to	zero	throughout	the	month.	The	higher	SST	threshold	
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value	in	the	Northern	Hemisphere	is	needed	because	the	275	K	isotherm	used	in	the	Southern	
Hemisphere	is	too	close	to	the	ice	edge	in	the	north.	The	closest	distance	the	threshold	
isotherms	are	to	the	ice	edge	is	more	than	400	km	(Cavalieri	et	al.	1999).	

In	summary,	the	order	of	processing	is	as	follows:	

1.	Calculate	sea	ice	concentrations	with	atmospheric	correction.	
2.	Apply	GR	filters.	
3.	Apply	SST	mask.	
4.	Apply	land	spillover	correction.	
	

	

Figure	5.	AMSR-E	sea	ice	concentrations	for	March	1,	2007.	(a)	Ice	concentrations	calculated	
using	PRR	(19),	PRR	(89),	and	ΔGR	without	applying	an	atmospheric	correction;	(b)	ice	
concentration	with	atmospheric	correction;	(c)	final	ice	concentration	with	additional	clean-up	
over	the	open	ocean	by	applying	the	standard	NASA	Team	GR	weather	filters;	(d)	difference	
between	(a)	and	(b);	(e)	difference	between	(b)	and	(c).	Differences	greater	than	10%	have	been	
truncated	for	the	erroneous	sea	ice	concentrations	in	the	lower	right	corner.		
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3.2.2	Snow	depth	on	sea	ice	

The	AMSR-E	snow-depth-on-sea-ice	algorithm	was	developed	using	DMSP	SSMI	data	(Markus	
and	Cavalieri	1998)	to	estimate	snow	depth	on	sea	ice	from	space.	The	snow	depth	on	sea	ice	is	
calculated	using	the	spectral	gradient	ratio	of	the	18.7	GHz	and	37	GHz	vertical	polarization	
channels,	

	 	 	 	 	 hs	=	a1	+	a2	GRV(ice)	 	 	 	 	 (12)	

where	hs	is	the	snow	depth	in	meters,	and	a1=2.9	and	a2=-782	are	coefficients	derived	from	the	
linear	regression	of	in	situ	snow	depth	measurements	on	microwave	data.	GRV(ice)	is	the	
spectral	gradient	ratio	corrected	for	the	sea	ice	concentration,	C,	as	follows	

	 GRV(ice)	=	[TB(37V)-TB(19V)-k1(1-C)]	/	[TB(37V)+TB(19V)-k2(1-C)]	 	 	 (13)	

with	k1=TBO(37V)-TBO(19V)	and	k2=TBO(37V)+TBO(19V).	The	open	water	brightness	
temperatures,	TBO,	are	average	values	from	open	ocean	areas	and	are	used	as	constants.	The	
principal	idea	of	the	algorithm	is	similar	to	the	AMSR-E	snow-on-land	algorithm	(Kelly	et	al.	
2003)	utilizing	the	assumptions	that	scattering	increases	with	increasing	snow	depth	and	that	
the	scattering	efficiency	is	greater	at	37	GHz	than	at	19	GHz.	For	snow-free	sea	ice,	the	gradient	
ratio	is	close	to	zero	and	it	becomes	more	and	more	negative	as	the	snow	depth	(and	grain	size)	
increases.	The	correlation	of	regional	in	situ	snow	depth	distributions	and	satellite-derived	
snow	depth	distributions	is	0.81	(Figure	6).	The	upper	limit	for	snow	depth	retrievals	is	50	cm,	
which	is	a	result	of	the	limited	penetration	depth	a	19	and	37	GHz.	

The	algorithm	is	applicable	to	dry	snow	conditions	only.	At	the	onset	of	melt,	the	emissivity	of	
both	the	19	GHz	and	the	37	GHz	channels	approach	unity	(that	of	a	blackbody)	and	the	gradient	
ratio	approaches	zero	initially	before	becoming	positive.	Thus,	snow	depth	is	indeterminate	
under	wet	snow	conditions.	Snow,	which	is	wet	during	the	day,	frequently	refreezes	during	the	
night.	This	refreezing	results	in	very	large	grain	sizes	(Colbeck	1982)	which	leads	to	a	reduced	
emissivity	at	37	GHz	relative	to	19	GHz	thereby	decreasing	GRV(ice)	and	thus	leads	to	an	
overestimate	of	snow	depth.	These	thaw-freeze	events,	therefore,	cause	large	temporal	
variations	in	the	snow	depth	retrievals.	This	temporal	information	is	used	in	the	algorithm	to	
flag	the	snow	depths	as	unretrievable	from	those	periods	with	large	fluctuations.	

As	grain	size	in	situ	measurements	are	even	less	frequently	collected	than	snow	depth	
measurements,	the	influence	of	grain	size	variations	could	not	be	incorporated	into	the	
algorithm.	Because	of	the	uncertainties	in	grain	size	and	density	variations	as	well	as	sporadic	
weather	effects,	AMSR-E	snow	depth	products	will	be	5-day	averages	similar	to	the	snow-on-
land	product.	
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Snow	depths	are	retrieved	for	the	entire	Southern	Ocean,	but	only	for	the	seasonal	sea	ice	
zones	in	the	Arctic,	because	the	microwave	signature	of	snow	is	very	similar	to	the	multiyear	ice	
signature	so	that	snow	depth	on	multiyear	ice	cannot	be	retrieved	unambiguously.	To	this	end,	
we	use	a	dynamic	multiyear	ice	mask	based	on	a	threshold	in	GR	which	evolves	on	a	day-to-day	
basis	starting	from	October	1	of	each	year	until	the	onset	of	melt.	

	

Figure	6:	Comparison	of	in-situ	and	SSM/I-derived	snow	depth	distributions	[from	Markus	and	
Cavalieri	1998].	

3.2.3	Sea	ice	drift	

The	method	to	estimate	sea	ice	drift	is	the	Maximum	Cross-Correlation	feature-tracking	
algorithm	developed	at	the	University	of	Colorado	(CU)	(Emery	et	al.,	1995).	The	basic	
methodology	of	the	algorithm	is	fairly	simple.		Two	spatially	coincident	images	are	obtained,	
separated	by	some	period	of	time.		A	target	area,	which	may	be	defined	by	a	pixel	or	a	group	of	
pixels,	is	chosen	in	the	first	(older)	image.		Then,	a	search	area	surrounding	the	target	area	is	
chosen	in	the	second	(newer)	image	(Figure	1).		Correlations	with	the	target	area	in	the	first	
image	are	compared	with	all	regions	(of	the	target	area’s	size)	in	the	search	area	in	the	second	
image.		The	region	with	the	highest	correlation	is	determined	to	be	the	location	where	the	
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target	moved	(Figure	2).		A	filtering	algorithm	is	then	employed	to	remove	at	least	some	of	the	
questionable	matches.	

Gridded	Level	3	daily	composite	brightness	temperatures	at	12.5	km	on	the	polar	stereographic	
grid	are	used	as	input	into	the	motion	algorithm.	Ice	motions	are	calculated	from	two	
composite	images	using	the	sliding	window	to	find	the	correlation	peak,	which	determines	the	
distance	a	feature	has	moved.	The	drift	is	then	computed	by	dividing	the	distance	by	the	time	
separation	(24	hours).	A	sea	ice	mask	is	applied	to	only	retrieve	ice	motion	where	concentration	
is	above	the	standard	sea	ice	extent	threshold	of	15%	concentration.	False	correlations	can	
occur	due	to	clouds	or	variability	of	ice	surface	features.	To	eliminate	this,	first	a	minimum	
correlation	threshold	of	0.7	is	applied	to	eliminate	weak	matches.	Next	a	post-processing	filter	
program	is	run	to	remove	at	least	some	questionable	and	erroneous	motions.	This	uses	the	fact	
that	motion	is	highly	spatially	correlated	and	requires	that	each	vector	be	reasonably	consistent	
in	speed	and	direction	with	at	least	two	neighboring	motion	estimates.		

The	CU	algorithm	is	simple	to	implement	and	widely	validated.	It	has	been	widely	used	on	a	
variety	of	imagery,	including	AMSR-E	(e.g.,	Meier	and	Dai	2006)	and	is	currently	the	basis	for	a	
long-term	sea	ice	drift	product	(Tschudi	et	al.	2016)	at	the	National	Snow	and	Ice	Data	Center.	
In	theory	the	accuracy	of	the	algorithm	is	limited	by	the	gridded	spatial	resolution	of	the	input	
data	–	i.e.,	a	sea	ice	parcel	either	stays	in	its	current	grid	cell	or	moves	to	a	surrounding	grid	
cell.	This	would	limit	the	accuracy	to	~12.5	km	per	day.	There	are	also	additional	error	sources	
such	as	false	correlations	from	clouds	or	ice	surface	changes,	so	the	uncertainty	would	be	even	
more	than	12.5	km	per	day.	However,	the	algorithm	includes	a	4X	oversampling	routine	to	yield	
a	theoretical	accuracy	of	up	to	3.125	km	per	day.	Validation	studies	of	AMSR-E	motions	in	
comparison	with	buoy-derived	motions	(Meier	and	Dai	2006)	show	an	RMS	error	of	4.5	–	5.0	
km	per	day	for	each	velocity	component	with	negligible	bias.	This	is	consistent	with	previous	
studies	using	SSMI-derived	motions,	given	the	increased	resolution	of	AMSR-E	(Meier	et	al.,	
2000).	Errors	are	lowest	in	the	central	ice	pack	during	winter.	Higher	errors	occur	near	the	ice	
edge	due	to	growth	and	melt	of	ice	and	thin	ice	condition,	during	summer	melt	due	to	liquid	
water	on	the	surface	obscuring	possible	correlation,	and	near	the	coast	due	to	the	spatial	
resolution	limitations.	

3.2.4	Adjustment	of	brightness	temperatures	

As	noted	above,	the	sea	ice	algorithms	for	AMSR2	are	the	same	as	those	used	for	AMSR-E.	The	
only	substantial	difference	is	that	AMSR2	brightness	temperatures	are	adjusted	–	i.e.,	
intercalibrated	–	to	match	AMSR-E	so	that	the	algorithm	coefficients	can	remain	the	same	and	
obtain	consistent	geophysical	estimates	from	both	AMSR-E	and	AMSR2.	
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Most	intercalibration	efforts	use	overlap	between	sensors	to	make	adjustments	to	the	sensor	
data.	This	was	not	possible	here	because	there	was	no	overlap	between	AMSR2	and	the	fully-
operational	AMSR-E.	However,	AMSR-E	did	operate	in	a	slow	rotation	mode.	This	allowed	an	
intercalibration	across	common	points	of	AMSR2	and	the	slow-rotation	AMSR-E	brightness	
temperatures.	Regressions	were	performed	for	these	common	points	over	a	full	year	and	
averaged	to	develop	regression	equations	to	adjust	AMSR2	brightness	temperatures	into	
“pseudo-AMSR-E”	brightness	temperatures	that	would	be	consistent	with	the	AMSR-E	
algorithms;	regressions	were	done	independently	for	both	the	Arctic	and	the	Antarctic.	The	
values	used	in	the	AMSR2	processing	are	provided	in	Table	1	below.	These	regression	equations	
are	applied	to	the	AMSR2	brightness	temperatures	before	they	are	fed	into	the	subsequent	
geophysical	algorithms.	

Table	I	
Average	regression	and	correlation	coefficients	for	AMSR2	Tbs,	based	on	comparison	
with	2	rpm	AMSR-E	Tbs	for	January	–	December	2013	(From	Meier	and	Ivanoff	2017)	

	 Northern	Hemisphere	 Southern	Hemisphere	

Channel	 Slope	 Intercept	 Correlation	 Slope	 Intercept	 Correlation	

18V	 1.031	 -9.710	 0.9984	 1.032	 -10.013	 0.9982	

18H	 1.001	 -1.104	 0.9985	 1.000	 -1.320	 0.9983	

23V	 0.999	 -1.706	 0.9979	 0.993	 -0.987	 0.9976	

36V	 0.997	 -2.610	 0.9916	 0.995	 -2.400	 0.9919	

36H	 0.996	 -2.687	 0.9938	 0.994	 -2.415	 0.9932	

89V	 0.989	 0.677	 0.9766	 0.975	 4.239	 0.9619	

89H	 0.977	 3.184	 0.9621	 0.969	 4.935	 0.9549	

	

Overall,	the	regressions	showed	very	good	consistency	between	AMSR2	and	the	slow-rotation	
AMSR-E.	The	most	notable	difference	is	found	in	the	18	GHz	V	polarization	channel,	which	has	
slopes	slightly	off	from	1	and	higher	intercept	values.	The	89	GHz	channels	also	show	less	
agreement	than	the	other	channels,	likely	due	to	the	greater	atmospheric	emission	at	89	GHz.	

For	sea	ice,	the	adjustments	are	evaluated	in	terms	of	minimizing	the	difference	in	extent,	area,	
and	concentration.	This	was	not	explicitly	possible	here	because	there	is	not	complete	coverage	
to	calculate	these	parameters	from	the	AMSR-E	slow	rotation	data.	In	order	to	examine	these	
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variables,	a	bridge	concentration	data	set	was	used,	based	on	SSMIS	brightness	temperatures.	
This	bridge	dataset	spanned	a	full	year	of	AMSR-E	and	AMSR2	(2010	–	2013).	Differences	in	
extent	and	area	between	each	sensor	and	SSMIS	were	calculated.	These	two	fields	were	then	
differenced	to	obtain	a	double-difference	AMSR2-AMSRE	extent	and	area	difference.	From	this,	
and	examination	of	the	concentration	fields,	it	was	found	that	an	adjustment	in	the	GR3619	
weather	filter,	from	0.050	to	0.046,	was	needed	to	optimize	the	sea	ice	concentration	fields.	

The	double-difference	fields	and	subsequent	GR3619	adjustment	decreased	the	extent	bias	
between	AMSR2	and	AMSR-E	from	~200,000	square	kilometers	to	<10,000	square	kilometers	
(Figure	7).	This	is	as	good	or	better	than	previous	sea	ice	extent	sensor	intercalibrations	(e.g.,	
Cavalieri	et	al.	2012;	Meier	et	al.	2011).	The	full	methodology	for	deriving	the	regression	
coefficients	and	the	adjustment	to	AMSR2	brightness	temperatures	for	the	sea	ice	algorithms	is	
described	in	Meier	and	Ivanoff	(2017).	

	

4.	Variance	and	Uncertainty	Estimates	

The	sea	ice	products	have	been	thoroughly	validated	in	previous	studies	using	AMSR-E	(e.g.,	
Markus	and	Cavalieri	2000;	Markus	and	Cavalieri	2009;	Markus	and	Cavalieri	1998;	Liu	and	
Cavalieri	1998).	Further	comparisons	have	been	made	for	AMSR2	sea	ice	concentration	in	
Meier	et	al.	(2017).	These	compared	AMSR2	concentration	estimates	with	concentrations	
derived	from	visible	imagery	obtained	from	the	Suomi	Visible	and	Infrared	Imaging	Radiometer	
Suite	(VIIRS).		

This	validation	showed	a	concentration	bias	of	3.9%	and	an	RMSE	of	11.0%	in	the	Arctic	(Figure	
8),	and	a	bias	of	4.45%	and	an	RMSE	of	8.8%	in	the	Antarctic.	These	values	are	consistent	with	
previous	validation	studies	of	AMSR-E	sea	ice	concentrations.	There	is	considerable	variation	
though	in	the	accuracy	of	AMSR2	concentration,	depending	on	sea	ice	conditions.	Errors	are	
low	for	high	concentration	regions,	but	are	higher	in	regions	with	lower	concentrations,	such	as	
the	marginal	ice	zone.	Again,	this	performance	is	typical	for	passive	microwave	retrievals	and	
has	been	found	in	numerous	other	studies.	

	

5.	Implementation	issues	

5.1	Computation/programming/procedural	consideration	

5.2	Quality	control	and	diagnostics	

5.3	Constraints,	limitations	and	diagnostics	
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The	basic	limitations	of	ice	concentration	data	from	AMSR2	include	relatively	coarse	resolution	
and	the	inability	to	unambiguously	identify	areas	covered	by	thin	ice,	pancake	ice	and	
meltponded	ice.	Thin	ice,	pancake	ice	and	meltponded	ice	can	have	emissivities	intermediate	to	
those	of	open	water	and	dry	thick	ice	and	could	contribute	to	significant	uncertainties	in	the	
retrieval	of	ice	concentration.	A	good	scheme	that	enables	classification	of	each	data	element	
into	different	surface	types	would	help	minimize	uncertainties.	

	

Fig.	7.		(a)	Arctic	and	(b)	Antarctic	extent	double	differences,	(AMSR2	–	SSMIS)	–	(AMSR-E	–	
SSMIS)	for	original	AMSR2	(green),	regressed	AMSR2	(purple),	and	regressed	AMSR2	with	GR	
adjustment	(blue).	From	Meier	and	Ivanoff	(2017).	
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Fig.	8.	Comparison	of	AMSR2	minus	VIIRS	ice	concentrations	for	different	AMSR2	ice	
concentration	ranges/bins	in	the	Arctic.	The	AMSR2	concentration	is	computed	with	the	NASA	
Team	2	algorithm.	Note	that	the	y-axis	range	is	different	for	"All",	"90-100%",	and	the	other	
plots.	From	Meier	et	al.	(2017).	
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